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Abstract—The non-conservative stability of an intermediate spring supported uniform column
clastically restrained at one end and subjected to a follower force at the other unsupported end is
studied. It is found that when the intermediate spring support s far from the unsupported end, the
instability mechanism is flutter. As the intermediate spring support approaches the unsupported
end. the instability mechanism is changed from flutter to divergence with the tncrease of intermediate
spring stiffness. For the hinged-intermediate and guided-intermediate spring supported columns, |
the critical buckling toad of flutter instability will first decrease, then increase as the intermediate
spring stiffness is increased. Nevertheless, when the instability mechanism is divergence, the critical
buckling load depends on the location of the intermediate spring support oaly, whercas for the
clumped-intermediate spring supported column the critical buckling load of divergence instability
decrenses monotonically to a fixed value as the intermediate spring stiffness is increased. Finally,
the influence of clastic end restraints on the stability of the column is also investigated.

l. INTRODUCTION

The stability of an elastic uniform column loaded by an end follower force has been
considered in many references (Herrmann, 1967 ; Bolotin, 1979 ; Leipholtz, 1980). The loss
of stability of such a system may be due to flutter or divergence types, depending on the
nature of the boundary conditions. It is well known that if the type of instability is
divergence, the buckling loads of the system can be determined by a static approach, while
for flutter the buckling loads should be determined by using the dynamic criterion (Ziegler,
1977).

In studies of the influence of intermediate support on the instability of the system,
Zoriiand Chernukha (1971) investigated the influence of the location of intermediate hinged
support on the stability of a column simply supported at one end and subjected to a follower
force at the other unsupported end. Sugiyama er al. (1985) discussed the effect of an
intermediate lateral spring support on the stability of a cantilevered tubular pipe conveying
fluid. Recently, Elishakofl and Lottati (1988) examined the exact solution of the problem
of an intermediate hinged supported column with simply supported or clamped boundary
conditions. It was shown that the nature of buckling of the system changes as the support
position changes. The closely related problem of the stability of elastic columns subjected
to a follower force at one ¢nd has been studied by Sundararajan (1976), Kar (1980) and
Kounadis (1981), and recently by Rosa and Franciosi (1990).

In this paper, we study the stability of an intermediate spring supported uniform
column elastically restrained at one end and subjected to a follower force at the other
unsupported end. The influence of elastic end restraints and the location and stiffness of
the intermediate spring support on the stability of the column is investigated. Several new
observations are presented. While taking the limit study, the results are compared with
those in the existing literature.
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2. ANALYSIS
Consider the small transverse oscillations ¥ (X, ) in the X Y-plane of an elastic uniform
Bernoulli~-Euler column with general elastic restraints at one end and a spring support at

intermediate location X = X, subjected to a follower force P at the unsupported end, as
shown in Fig. 1. The governing equation is
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where E, [, m and [ denote the Young's modulus, the second moment of area, mass per
unit length and length of the beam, respectively. Ky, and K are rotational and translational
spring stifinesses at X =0 and Ky, is the intermediate translational spring stiffness at
X=X,

Using the modal approach, one assumes
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Fig. 1. Geometry and dimensions of the non-conservative system.
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V(X.t) = W(X)e™, (3)

where i = ./ — 1 and w is the natural frequency of vibration. Substituting eqn (5) into eqns
(1)-(4), and using the following non-dimensional parameters,

KTL13 KTIIJ

A= 17 ﬁoL=—EI—- Br. = El r1=’—'—EI ’ (6)

we obtain the equation of motion in the following non-dimensional form

d‘v  d*v
'(Ez‘+pa-x—z—A‘V=0, 0

with the associated boundary conditions

TV =0 (®)

—5 =0, )
and the continuity conditions at x = {,

Vl" = VIC"' v

4
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P MR (10)

The complete solution of eqn (7) is

v {C. cosh Ax+ C; sinh Ax+ Cycos nx+Cysinngx, 0<x<{,
*) = Cscosh ix+Cq sinh Aix+Cycosnx+Cysinnx, (<x<]|, ()

where

2
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and C.i=1.2...., 8 are constants to be determined. Substituting the solution (11) into
the boundary conditions (8) and (9) and the continuity conditions (10) vields

(D, {C} =10}, ij=1.273.4, (13)

where {C}7 = [C\.C,.C,.Cy] and D,, are given in the Appendix.
For a non-trivial solution of (), the determinant

|D,| = 0. (14)

This leads to the characteristic equation of the buckling loads. The lowest value of the
buckling loads is the critical buckling load and the corresponding instability mechanism
may be divergence or flutter.

Dirergence instability

If the instability mechanism of the problem is divergence, the critical buckling load
can be determined through the static method. By ignoring the inertial term in eqn (7). the
complete solution of the system, eqn (11). becomes

V() Ci+Cox+Cicosnx+Cysingy, 0<x <, 15
(v) = 5
Ci+Cov+Creospx+Cysingx, < v <1, (L

where
N o= p. (16)
Now, two spectal cases are discussed.
Case 4. With translational and withowt rotational elastic end support
For a column with translational and without rotational clastic support at X = 0,
Ba = 0. Conscquently, the characteristic equation for divergence instability is

stn pd = 0. (17)

As a result, the critical buckling load is

te

Do = (18)

vay

Uk |

It can be observed that the critical buckling load for divergence instability depends on the
location of the intermediate support only. It is independent of the stiffness of the inter-
mediate spring support and that of the translational elastic end support. Obviously. this is
a generalization of the result given by Elishakoff and Lottati (1988). They had shown that
the critical buckling load for the divergence instability of a simply supported column with
intermediate hinged support depends on the location of the intermediate hinged support
only.

Case B. With rotational and without translational elastic end support
When the column is subjected to rotational and without translational clastic end
support at X = 0, then ff, = 0. For divergence instability, the characteristic equation is

cos nl = 0. (19)

Consequently, the critical buckling load is
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(20)

This indicates that the critical buckling load for divergence instability also depends on the
location of the intermediate support only.

3. NUMERICAL RESULTS AND DISCUSSION

Figure 2 illustrates the variation of critical buckling load (p,,) versus the intermediate
spring stiffness (B,) of a hinged-intermediate spring supported column for several locations
of the intermediate spring support (). The curves for lower values of { {such as ¢ = 0.1,
0.3 and 0.4) show that the instability mechanism is flutter. which is due to the coalescence
of the first and second natural frequencies. while those for higher values of ¢ (such as
{ =0.8, 0.803 and 1.0) show that stability is lost owing to divergence and the critical
buckling load depends on { only and decreases as { is increased. One observes that the
critical buckling load of flutter instability will first decrease as fi;; 1s increased and as f, is
greater than the corresponding critical value. which corresponds to the lowest critical
buckling load, it will increase instead. For intermediate values of { (¢ = 0.5, 0.52 and 0.6),
the curves show that the instability mechanism changes from flutter to divergence at a
transition point of ;. At this transition point there is a sudden increase in the value of
critical buckling load and thereafter the divergence critical buckling load remains constant
with increasing f4,. The value of fi, of the transition point decreasces with increasing ¢.

Figure 3 illustrates the variation of critical buckling load versus the intermediate spring
stiffness of a guided-intermediate spring supported column for several locations of the
intermediate spring support. These curves are qualitatively similar to those in Fig. 2.
However, comparison of Fig. 3 with Fig. 2 shows that for the same  the critical buckling
load and the transition valuc of f;; of the guided-intermediate spring supported column
arce less than those of the hinged-intermediate spring supported column. [t can also be found
that the critical buckling load of divergence instability depends on the location of the
intermediate spring support only. Especially for the curve for { = 0.3, the critical buckling
load of flutter instability due to the coalescence of the first and second natural frequencics
decreases, firstly to the lowest critical buckling load, then increases with the increase of iy
to the valuc of jump where the instability mechanism changes from flutter to divergence.
This is due to the buckling load of divergence instability being fess than that of flutter
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Fig. 2. Variation of the critical buckling load of a hinged-intermediate spring supported column
with the intermediate spring support stiffness.
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Fig. 3. Variation of the critical buckling load of a guided-intermediate spring supported column
with the intermediate spring support stifTness.

instability, resulting from the coalescence of the second and third natural frequencies. This
phenomenon exists for a small range of ;. Nevertheless, the buckling load of flutter
instability decreases with the increase of fi;,, then the buckling load of flutter instability
becomes less than that of divergence instability and the instability mechanism changes from
divergence to flutter. However, there exists no jump of the critical buckling load. With a
further increase of ff,,, the critical buckling load of flutter instability decreases firstly, then
increases and finally the instability mechanism becomes divergenee instability again,
Figure 4 illustrates the variation of critical buckling load versus the intermediate spring
stiffness of a clamped-intermediate spring supported column for several locations of the
intermediate spring support. The curves for lower values of § (such as { = 0.1, 0.3 and 0.4)
show that the instability mechanism is flutter, which is due to the coualescence of the first
and sccond frequencies. For the curves of { = 0.52 and { = 0.6, the changes of critical
buckling load and instability mechanism are similar to those for the curve of = 0.3 in Fig.
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Fig. 4. Variation of the critical buckling toad of a clamped-intermediate spring supported column
with the intermediate spring support stiflness.



Non-conservative stability of spring supported columns 1135

3. while for higher values of { (such as { = 0.8, 0.803 and 1.0), there exists a transition value
of By where the critical buckling load jumps and the type of instability mechanism is
changed. As fi,is less than this transition value, the type of instability mechanism is flutter,
while if B, is greater than this transition value, the type of instability mechanism is
divergence. As { < 0.803. the critical buckling load increases through the jump as f, is
increased, whereas for { > 0.803 the critical buckling load decreases through the jump as
B is increased. This also indicates that with the increase in the value of ¢, the jump occurs
at a lower value of f, and after the jump. the critical buckling load decreases monotonically
to a fixed value as f, is increased. The results also show that when S, is small. the variation
of { has no significant influence on the critical buckling load of flutter instability.

If one considers a column with the boundary conditions as shown in Fig. 5, then when
the left-end rotational spring stiffness (8,,) becomes zero, it yields to a hinged-intermediate
spring supported column. Instead. if the rotational spring stiffness approaches infinity. it
yields to a clamped-intermediate spring supported column. It can be observed from Fig. 5
that when { is small (such as { = 0.1). the instability mechanism is flutter, which is due to
the coalescence of the first and second natural frequencies, and the critical buckling load
increases with increasing By,. For intermediate values of { (such as { = 0.5 and 0.6), the
critical buckling load increases with increasing By, and the instability mechanism changes
from divergence to flutter at a transition point of f§,, where the flutter instability is due to
the coalescence of the second and third natural frequencies, and there exists no jump of the
critical buckling load. However, there exists a jump of the critical buckling load of flutter
instability for the curve { = 0.5 at f,, = 11.1; this is due to the flutter instability being
changed from the coalescence of the second and third natural frequencies to that of the first
and second natural frequencics. After the jump, the critical buckling load decreases with
increasing fi,,. For higher values of { (such as { = 1.0). the instability mechanism becomes
divergence for all values of ff,, and the critical buckling load increases monotonically to a
fixed value with tncreasing fi,,.

If onc considers a column with the boundary conditions as shown in Fig, 6, then
when the lefi-end translational spring stitfness (f,4) becomes zero, it yiclds to a guided-
intermediate spring supported columa. Alternatively, if the translational spring stiffness
approaches infinity, it yiclds to a clamped-intermediate spring supported column. The
conclusions are similar to those for the beam shown in Fig. 5, except that when the
translational spring stiffness is small, the critical buckling load of divergence instability for
higher values of { (such as 0.5, 0.6 and 1.0) is less than that of flutter instability for lower
values of { (such as { = 0.1).
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Fig. 5. Variation of critical buckling load with rotational spring stiffness.
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Fig. 6. Variation of ¢ritical buckling load with translational spring stitfuess.

3. CONCLUSIONS

In this paper. the non-conservative stability of an intermediate spring supported uni-
form column clastically restrained at one end and subjected to a follower torce at the other
unsupported end is studied. Tt is found that when the intermediate spring support s far
from the unsupported end, the instability mechanism is that of flutter. As the intermediate
spring support approaches the unsupported end, the instability mechanism changes from
flutter to divergence with increasing intermediate spring stiffness. For the hinged-inter-
mediate and guided-intermediate spring supported columns, the critical buckling load of
flutter instability will first decrease, then increase as the intermediate spring stiffness is
increased. Nevertheless, when the instability mechanism is divergence, the critical buckling
load depends on the location of the intermediate spring support only, whereas for the
clamped-intermediate spring supported column the critical buckling load of divergence
instability decreases monotonically to a fixed value as the intermediate spring stiffness is
increased. For a hinged-intermediate spring supported column with a rotational spring at
the hinged end, as the intermediate spring support s far from the unsupported end, the
critical buckling toad of flutter instability increases with increasing rotational spring stifl-
ness. When the intermediate spring support approaches the unsupported end. the instability
mechanism changes from divergence 1o flutter as the rotational spring stiffness increases,
The influence of translational spring stiffness on the critical buckling load of the guided-
intermediate spring support with a translational spring at the guided end is similar to those
for the hinged-intermediate spring supported column with a rotational spring at the hinged
end.
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APPENDIX: ELEMENTS OF THE MATRIX [D,]

D, = §, cosh 4y — 8, sinh i{+cos (.

D,, = §, cosh A{ —§, sinh i{+sin ng,

D,y = — (S, cosh i{ + S, sinh i{ +cos ().

D,y = — (S, cosh i{ + Sy sinh A +sin n{).

D, = §,Asinh A{— 8.4 cosh A —n sin n¢,

D., = §;Asinh A{~S,4 cosh A+ n cos n,

D,y = —(S¢Asinh AJ+ 8,4 cosh iJ—n sin nQ),

D,y = —(S,4sinh AJ + Sl cosh AJ +n cos 7).,

D\, = S,A* cosh i{ —S.4?sinh 47 —n? cos n(.

Dy, = S,i* cosh A{ —§,4 sinh A{ —n* sin (.

D, = —(S,i* cosh iJ+ S,47 sinh i —n® cos 7).

D= —(S;4A7 cosh Al + S44% sinh 4J —n? sin p{).

Dy, = S A" sinh A = S,4" cosh A7+ sin g,

Dy, = S,A"sinh A{ - 8§,4" cosh Al —n' cos n.

Dy = ~[S(4" sinh AJ+ B, cosh 4n) + S,(4* cosh A0 + f, sinh dn) + (B cos nC + 7" sin Q).
Dy = ~[Sy(4" sinh A{+ P, cosh dn) + §4(A" cosh A + B, sinh dn) + (B, sin nl —n’ cos Q).

where

. l:ﬂ: —}f}lrl‘rﬂlr'!.

S
§. = ()-:+’1:)/‘rr;
A+
_ g”? ")

- F>+ﬂnu.ﬂr1. )
_ MhoBr = 4n’

T ),’+,4',[§;l_/i” )

! R .y .

S = F(}.‘rr cosh A cos g+ 4%n? sinh dsin y),
L, s

S, = P(—A n* sinh 4 cos n —A*y* cosh Asin ),
I, .

S, = Z—,(A n° cosh Asinn—A°n’ sinh Acosn),

i vy ,
S = F(-—A‘q' sinh Asin g+ A%’ cosh Acos ).



