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'\hstract-The non-conservative stability of an intermediate spring supported uniform column
e1astic<llly restrained at one end and subjected to a follower force at the other unsupported end is
studied. It is found that when the intermedi:lle spring support is f<lr from the unsupported end. the
Instahility m(:chanism is flutter. As the intermedi<lte spring support approaches the unsupported
,·nt!. the instahility mechanism is ch<lnged from flutter to divergence with the incre<lse of intermediate
spring stiffness. For the hinged-intermedi:lte and guided-intermediate spring supported columns••
the critical huck ling load of flutter inst<lbility will first decrease. then increase as the intermediate
spring stiffness is increased. Nevertheless. when the instahility mechanism is divergence. the critical
huck ling Il1ad depends on the !oc<ltion of the intermediate spring support only. whereas for the
c1:ullpcd-interlllediate spring supported column the critical huck ling load of divergence instahility
decreases monotonically to :1 Ihed value as the intermediate spring stifTm:ss is increased. Finally.
the inlluence of elastic end restraints on the stahility of the eolumn is also investig;lted.

I. INTRODUCTION

The stability of an elastic uniform column loaded by an end follower force has been
considered in many references (Herrmann. 1967; Bolotin. 1979; Leipholtz. 1980). The loss
of stability of such a system may be due to flutter or divergence types. depending on the
nature of the boundary conditions. It is well known that if the type of instability is
divergence. the buckling loads of the system can be determined by a static approach. while
for flutter the buckling loads should be determined by using the dynamic criterion (Ziegler.
1977).

In studies of the influence of intermediate support on the instability of the system.
Zorii and Chernukha (1971) investigated the influence of the location of intermediate hinged
support on the stability ofa column simply supported at one end and subjected to a follower
force at the other unsupported end. Sugiyama el al. (1985) discussed the effect of an
intermediate lateral spring support on the stability of a cantilevered tubular pipe conveying
fluid. Recently. Elishakotf and Lottati (1988) examined the exact solution of the problem
of an intermediate hinged supported column with simply supported or clamped boundary
conditions. It was shown that the nature of buckling of the system changes as the support
position changes. The closely related problem of the stability of elastic columns subjected
to a follower force at one end has been studied by Sundararajan (1976). Kar (1980) and
Kounadis (1981). and recently by Rosa and Franciosi (1990).

In this paper. we study the stability of an intermediate spring supported uniform
column elastically restrained at one end and subjected to a follower force at the other
unsupported end. The influence of elastic el1.d restraints and the location and stiffness of
the intermediate spring support on the stability of the column is investigated. Several new
observations are presented. While taking the limit study. the results are compared with
those in the existing literature.
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2. ANALYSIS

Consider the small transverse oscillations V(X. t) in the XY-plane of an elastic uniform
Bernoulli-Euler column with general elastic restraints at one end and a spring support at
intermediate location X = Xj, subjected to a follower force P at the unsupported end, as
shown in Fig. I. The governing equation is

(I)

The associated boundary conditions are

(2)

and

(3)

and the continuity conditions at the support, X = X" are

r-Ix, = Vlx,', (~x~rl = (~xVI '
(J x ( () xt

(4)

where E, I, m and I denote the Young's modulus, the second moment of area, mass per
unit length and length of the beam, respectively_ K~L and KTL are rotational and translational
spring stitfnesses at X =0 and Krt is the intermediate translational spring stiffness at

X=X 1-

Using the modal approach. one assumes

l-----Xr---i

\.
Fig. I. Geometry and dimensions of the non-conservative system.
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V(X.t) = W(X) eiwt
,
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(5)

where i = P and w is the natural frequency of vibration. Substituting eqn (5) into eqns
(1)-(4), and using the following non-dimensional parameters,

x
x=/, r = XI

.. I '

we obtain the equation of motion in the following non-dimensional form

d 4 V d 2 V ,
-d4 +P-d 2 -1\'V = 0,

.'t' X

with the associated boundary conditions

d 2 V dV
at x = 0: d---r -P9L -d = 0x x

and the continuity conditions at x = "

VIc- = VI.:., dVI = dVI .
dx:- dx:+

d
2 VI d

2 VI
dx 2 : = dx 2 , .. '

The complete solution of eqn (7) is

(6)

(7)

(8)

(9)

(10)

{
C 1 cosh )_'t'+ C 2 sinh A.x+ C J cos tlx+ C4 sin tlX,

V(x) = . .
C, cosh ).x+ C6 smh ).x+C7 cos tlx+ Cs sm tlx.

where

,'~ ~p+JW)'+A'l

q' =~+JW)'+A'l

0< x < C.
, < x < I, (II)

(12)
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and C. i = 1.2..... 8 are constants to be determined. Substituting the solution (II) into
tht: boundary conditions (8) and (9) and the continuity conditions'( 10) yields

[D"HC} = {a}. i.j = 1.2.3.4.

where {Cl
T

= [e,. C. C 7 • C~l and D" are given in the Appendix.
For a non-trivial solution of V(x). the determinant

( 13)

( 14)

This leads to the characteristic equation of the buckling loads. The lowest value of the
buckling loads is the critical buckling load and the corresponding instability mechanism
may be divergence or flutter.

Dil'ergence instahility

If the instability mechanism of the problem is divergence. the critical buckling load
can be determined through the static method. By ignoring the inertial term in eqn (7), the
complete solution of the system. eqn (II). becomes

. {C 1+C~x+C) cos tIX+C J sin tf.':.
~ (x) = . .

C 5 + C,x+ C 7 cos tlx+ ( , Sill tlX.

w 11\:n:

tr = p.

Now, two spel:ial Glses are disl:Ilssed.

0< x < ~.

~ < x < I.
( 15)

( 16)

Case A. ~Vith translational (1IIe1l1'ithout mtational clastic ('1/(1 support
For a column with translational and without rotational elastil: support at X = O.

fl,,, = O. Consequently, the l:haracteristil: equation for divergenl:e instability is

sin tl' = O. ( 17)

As a result, the l:ritical buckling load is

,
7C

p" = ~,.
~ -

( IX)

It can be observed that the critical buckling load for divergence instability depends on the
location of the intermediate support only. It is independent of the stiffness of the inta­
mediate spring support and that of the translational clastic end support. Obviously. this is
a generalization of the result given by Elishakoffand Lottati (1988). They had shown that
the critical buckling load for the divergence instability of a simply supported column with
intermediate hinged support depends on the location of the intermediate hinged support
only.

Case B. ~Vith rotational anelll'ithout translatimwl elastic enel support
When the column is subjected to rotational and without translational clastic end

support at X = 0, then {I n. = O. For divergence instability. the characteristic equation is

cos tl' = O.

Consequently. the critical buckling load is

( 19)
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1'1:'

Pa = 4~;:'
(20)

This indicates that the critical buckling load for divergence instability also depends on the
location of the intermediate support only.

3. NUMERICAL RESULTS AND DISCUSSION

Figure 2 illustrates the variation of critical buckling load (Pa) versus the intermediate
spring stiffness (PT!) ofa hinged-intermediate spring supported column for several locations
of the intermediate spring support (0. The curves for lower values of ( (such as ( = 0.1.
0.3 and 0.4) show that the instability mechanism is flutter. which is due to the coalescence
of the first and second natural frequencies. while those for higher values of ~ (such as
, = 0.8. 0.803 and 1.0) show that stability is lost owing to divergence and the critical
buckling load depends on , only and decreases as , is increased. One observes that the
critical buckling load of flutter instability will first decrease as PT! is increased and as PTI is
greater than the corresponding critical value. which corresponds to the lowest critical
buckling load. it will increase instead. For intermediate values of ( (~ = 0.5. 0.52 and 0.6).
the curves show that the instability mechanism chunges from flutter to divergence at a
transition point of PT!' At this transition point there is u sudden increase in the value of
critical buckling load and thereafter the divergence critical buckling load remains constant
with increasing PT!' The value ofPrt of the transition point decreases with increasing (.

Figure 3 illustrates the variation ofcritical buckling load versus the intermediate spring
stiffness of a guided·intermediate spring supportcd column for several locations of the
intermediate spring support. These curves arc qualitatively similar to thosc in Fig. 2.
However. comparison of Fig. 3 with Fig. 2 shows that for the samc , the critical buckling
load and the transition value of lin of the guided·intermediate spring supported column
arc less than those of the hinged·intermediate spring supported column. It can also be found
that the criticul buckling load of divergence instability depends on the location of the
intermediate spring support only. Especially for the curve for ( =0.3. the critical buckling
load of llutter instability due to the coalescence of the lirst and second natural frequencies
decreases. firstly to the lowest critical buckling load. then increases with the increase of fin
to the value of jump where the instability mechanism changes from flutter to divergence.
This is due to the buckling load of divergence instability being less than that of nutter
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Fig. 2. Variation of Ihe critical buckling load of a hinged·intermediate spring supported column
with the intermediate spring support stiffness.
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Fig. 3. Variation or the critical buckling load or a guided-intermediate spring supported column
with the intermediate spring support stitrness.

instability. resulting from the coalescence of the sewnd and third natural frequencies. This
phenomenon exists for a small range of {tn. Nevertheless. the buckling load of nutler
instability decreases with the increase of {tl/' then the buckling load of nutter instability
becomes less than that ofdivergetH:e instability and Ihe instability mechanism changes from
divergence to flutler. However. there exists no jump of the critical buckling load. With a
further increase of {tn. the critical buckling load of flutler instability decreases firstly. then
inl:reases and finally the instability mechanism bewmes divergence instability <tgain.

Figure 4 illustrates the variation ofl:ritil:al buckling load versus the interrnediate spring
stilfness of a damped-intermediate spring supported column for several locations of the
intermediate spring support. The curves for lower values of ( (such as ( = 0.1.0.3 and 0.4)
show that the instability mel:hanism is flutter. which is due to the wa!csl:enl:e of the first
and second frequencies. For the wrves of ( = 0.52 and ( = 0.6. the changes of critical
buckling load and instability mechanism arc similar to those for the curve of ( = 0.3 in Fig.
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3. while for higher values of ~ (such as ~ = 0.8.0.803 and t.O). there e:<ists a transition value
of PTt where the critical buckling load jumps and the type of instability mechanism is
changed. As Prr is less than this transition value. the type of instability mechanism is flutter.
while if Prr is greater than this transition value. the type of instability mechanism is
divergence. As ~ < 0.803. the critical buckling load increases through the jump as PTt is
increased. whereas for ~ ~ 0.803 the critical buckling load decreases through the jump as
Prr is increased. This also indicates that with the increase in the value of C. the jump occurs
at a lower value ofPrr and after the jump. the critical buckling load decreases monotonically
to a fixed value as Prr is increased. The results also show that when Prr is small. the variation
of' has no significant influence on the critical buckling load of flutter instability.

If one considers a column with the boundary conditions as shown in Fig. 5. then when
the left·end rotational spring stiffness (PHd becomes zero. it yields to a hinged·intermediate
spring supported column. Instead. if the rotational spring stiffness approaches infinity. it
yields to a c1amped·intermediate spring supported column. It can be observed from Fig. 5
that when' is small (such as , = 0.1). the instability mechanism is flutter. which is due to
the coalescence of the first and second natural frequencies. and the critical buckling load
increases with increasing PM.. For intermediate values of' (such as , = 0.5 and 0.6). the
critical buckling load increases with increasing PilL and the instability mechanism changes
from divergence to flutter at a transition point of {JIlL where the flutter instability is due to
the coalescence of the second and third natural frequencies. and there exists no jump of the
critical buckling load. However. there exists a jump of the critical buckling load of flutter
instability for the curve' = 0.5 at {Jill. = 11.1 ; this is due to the flutter instability being
changed from the coalescence of the second and third natural frequencies to that of the first
and second natural frequencies. After thc jump. the critical buckling load decreascs with
increasing /1111.• For highcr values of' (such as , = 1.0). the instability mechanism becomes
divergence for all valucs of {Jill. and the critical buckling load increases monotonically to a
fhed value with increasing {llll.'

If onc considers a column with thc boundary conditions as shown in Pig. 6. then
when thc Ieft·end translational srring stiffness (II rrJ becomes zero. it yields to a guilkd·
intermediate srring surrorted column. Altern'ltiveJy. if the translational spring stiffness
approaches infinity. it yields to a damped·intermediate spring supported column. The
conclusions arc similar to those for the beam shown in Fig. 5, except that when the
translational spring stiffness is small. the critical buckling load of divergence instability for
higher values of' (such as 0.5. 0.6 and 1.0) is less than that of flutter instability for lower
values of' (such as , = 0.1).
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Fig. 5. Variation of critical buckling load with rotational spring stiffness.
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4. CO:-;CLUSIONS

In this paper. the non-conservative stahility of an intermediate spring supported uni­
form column c1astically restrained at one end and suhjel:ted to a follower force at the other
unsupported end is studied. It is found that when the intermediate spring support is far
from the unsupported end. the instahility mechanism is that offlulta. As the intermcdiate
spring support approaches the unsupported end. the instahility mechanism changes from
fluller to diVl:rgenee with increasing intermediate spring stiffncss. For the hinged·inter·
II1I.:diate and guided-intermediate spring supported l:olumns. the l:ritical huckling load of
fluller instahility will first del:rease. then inl:rease as the intermediate spring stitrness is
im:reased. Neverthcless. when the insta hili ty mechanism is divcrgenl:e. the cri til:al buck Iing
load depelllis on the 1tH.:ation of the intermediate spring support only. whereas f()r the
clamped-intermediate spring supported column the eritil:al huck ling load of divergenl:e
instability del:n:ases monotonkally to a fixed value as the intermediate spring stiffness is
increased. For a hinged-intermediate spring supported l:olumn with a rotational spring at
the hinged end. as the intermediate spring support is far from the unsupported end. the
l:ritil:al bUl:kling load of Hutter instability inl:reases with inaeasing rotational spring stifl'·
ness. When the intermediate spring support approal:hes the unsupported end. the instability
mecllanism I:hanges from divcrgelKe to flutter as the rotational spring still'm:ss increases.
The influenl:e of translational spring stilrness on the I:ritkal bUl:kling load of the guided·
intermediate spring support with a translational spring at the guided end is similar to those
for the hinged-intermediate spring supported I:olumn with a rotational spring at the hinged
end.
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APPENDIX: ELEMENTS OF THE MATRIX [D,,)

D" = 5, cosh ;.~ -5= sinh ;.~ +cos ,,(.

D,= = 51 cosh ;'(-5. sinh ;'(+sin,,(.

D" = - (5, cosh;'~+5. sinh;'~+cos ,,().

D,. = -(S,cosh;'~+S,sinh;'~+sin"O.

D=, = S,;'sinh;.(-S=;'cosh;'(-" sin ,,(.

D== = S,;' sinh ;.( - 5.;' cosh;'~+" cos ,,(.

D=, = -(S,AsinhA~+S.;'coshi.~-"sin"O.

D=. = -(S,Asinh;'~+S,;'cosh;'~+"cos,,().

D" = S,;. =cosh;'( _S=;.2 sinh;'~ -,,= cos ,,(.

D,= = S,;'= cosh ;'(_S.;'2 sinh ;.(-,,= sin ,,(.

D" = - (S,;. =cosh ;.~ + S.;. =sinh ;.( - ,,= cos ,,0.
n .• = -(S,;'= cosh ;.(+S,;'= sinh ;'C-,,1 sin ,,0.
nIl = S,;. I sinh;'( -S1;" cosh ).e +,,' sin ,,(.

f)." = .'I.;' I sinh ;.C - S.;.' cosh ;.C -,,' cos "C.

n." = -[S,lA' sinh ;'(+f1ncosh ;.,,)+S.lA' cosh ;'(+flnsinh ;.,,) + (fIn cos ,,(+,,' sin ,,01.
n.. ~ _[.'1,(;.' sinh;'C +f1ncosh ;"O+S,O 'cosh ;'C+flnsinh ;.,,)+(fln sin "e-"'cos,,C>I.

where

S I ( .),. h' l' I .• =:1.' -,I. ". Sin ... cos "- ... ·'1 cosh;' Sin ,,).

S 1.\, h" " J •
1 = :fi (,I. '1" COS ... Sin ,,- ...." sinh;' cos,,) •

I .,,,. .. "
5. = :1.'(-" ". Sinh ,I. Sin ,,+,1.',,' cosh ;'cos,,).


